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ABSTRACT
Cognitive diagnosis models have been widely used in different ar-

eas, especially intelligent education, to measure users’ proficiency

levels on knowledge concepts, based on which users can get per-

sonalized instructions. As the measurement is not always reliable

due to the weak links of the models and data, the uncertainty of

measurement also offers important information for decisions. How-

ever, the research on the uncertainty estimation lags behind that

on advanced model structures for cognitive diagnosis. Existing ap-

proaches have limited efficiency and leave an academic blank for

sophisticated models which have interaction function parameters

(e.g., deep learning-based models). To address these problems, we

propose a unified uncertainty estimation approach for a wide range

of cognitive diagnosis models. Specifically, based on the idea of

estimating the posterior distributions of cognitive diagnosis model

parameters, we first provide a unified objective function for mini-

batch based optimization that can be more efficiently applied to a
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wide range of models and large datasets. Then, we modify the repa-

rameterization approach in order to adapt to parameters defined

on different domains. Furthermore, we decompose the uncertainty

of diagnostic parameters into data aspect and model aspect, which

better explains the source of uncertainty. Extensive experiments

demonstrate that our method is effective and can provide useful

insights into the uncertainty of cognitive diagnosis.
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1 INTRODUCTION
Cognitive diagnosis is a class of methods that have been widely

studied in areas such as education [19], psychometric [28], medical

diagnosis [31], and crowdsourcing [21, 36]. The main purpose of

cognitive diagnosis is to obtain examinees’ cognitive states from

their activities. Particularly, in educational area, such as the online

learning platforms, cognitive diagnosis obtains students’ knowl-

edge proficiencies from the their learning activities (e.g., question
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Figure 1: A toy example.

answering), as well as estimates the attributes of questions (e.g.,

question difficulty). A toy example is illustrated in Figure 1, where

two students have answered questions that relate to the knowledge

concept “Division”. After diagnosis, we know that 𝑠1 has mastered

“Division” well while 𝑠2 has a lower proficiency (black points). Cog-

nitive diagnosis usually serves as the core of intelligent tutoring

systems, which provide personalized support for learners.

In practice, however, the diagnostic results of students are not

always highly reliable. In the example of Figure 1, although both stu-

dents 𝑠1 and 𝑠2 are diagnosed to have high proficiency of “Division”,
the diagnostic result of 𝑠1 is not as reliable as 𝑠2. The reason is that

𝑠1’s proficiency of “Division” is inferred based on a single response

related to “Division”, which may cause severe bias. The uncertainty

of diagnosis has important influence on personalized teaching. The

system can assign less practice of “Division” to 𝑠2; while for 𝑠1, more

questions or better cognitive diagnosis models are needed to obtain

an exact proficiency assessment. Furthermore, in a recommender

system, more diverse learning resources can be recommended to

students with higher uncertainty [13]. In computerized adaptive

testing, reducing uncertainty of diagnosis is an important target

when selecting the next test question for an examinee [2]. However,

most existing diagnosis models cannot tell how confident they are

with their point-wise diagnosis.

In recent years, more sophisticated model structures have been

proposed for better diagnosis, including deep learning-based mod-

els such as NeuralCD [33]. However, the research on the uncertainty

estimation of cognitive diagnosis remains on several traditional non-

deep learning-based models. For example, the Bayesian method

is the most representative for item response theory (IRT) based

models [9]. The application of existing methods is limited due to

the following challenges. 1) Limited application range of training

algorithms. The widely accepted training algorithms for existing

methods, such as Expectation-Maximization (EM) based algorithms

and Metropolis-Hasting (MH) sampling-based algorithms, are inef-

ficient or even inapplicable to complex diagnosis models (e.g., deep

learning-based models) having large-scale parameters and on large

datasets. 2) Insufficient estimation of parameters. Generally, there

are two types of parameters in cognitive diagnosis models, i.e., the

diagnostic parameters that represent the features of students and

questions, and function parameters that decide the interaction func-

tions among diagnostic parameters. Existing methods only consider

diagnostic parameters, because they are proposed based on tradi-

tional cognitive diagnosis models, where the interaction functions

are fixed without extra parameters. However, in the state-of-the-art

deep learning-based models, the interaction functions are modeled

with neural networks, where additional uncertainty from neural

network parameters should be considered.

Our Work. In this paper, we propose a unified Uncertainty esti-

mation approach for Cognitive Diagnosis models (abbreviated as

UCD), which can both be applied to traditional latent trait mod-

els and fill the vacancy for deep learning-based models. 1) Based

on the idea of learning the posterior distributions of the parame-

ters, we derive a unified objective function for mini-batch-based

optimization, which can be applied to both deep and non-deep

learning models. 2) We propose a derivative reparameterization ap-

proach, which not only facilitates the efficient gradient descending-

based training but also conveniently adapts to parameters with

different domains of definition. 3) By further consideration of the

difference between diagnostic parameters and function parame-

ters, we factorize the uncertainty of diagnostic parameters into

data uncertainty and model uncertainty. Through extensive experi-

ments on real-world datasets, we validate the effectiveness of UCD

and provide some useful insights into the uncertainty of cogni-

tive diagnosis models. The codes and public data are available at:

https://github.com/LegionKing/UCD.

2 RELATEDWORK
Cognitive Diagnosis. Existing cognitive diagnosis methods can

be generally classified into non-deep learning models and deep

learning-based models. Representative non-deep learning cognitive

diagnosis models include continuous latent trait models, such as

Item Response Theory (IRT) [9] and Multidimensional Item Re-

sponse Theory (MIRT) [27]; and discrete classification models, such

as Deterministic Input Noisy “And” Gate model [6], and Higher-

order DINA [7]. By contrast, deep learning-based approaches achieve

state-of-the-art and capture attentions in recent year. Wang et al.

[32] proposed a NeuralCD framework that introduces neural net-

works to learn the interaction between students and questions

while keeping interpretability. Several extensions based on Neu-

ralCD have been proposed, such as [20, 24, 33, 35].

Uncertainty Quantification. Uncertainty quantification plays

a critical role in the process of decision making and optimization

in many fields [14, 22]. In cognitive diagnosis, the uncertainty of

diagnostic parameters has been studied for traditional models. Fully

Bayesian sampling-based methods [26]) and the multiple imputa-

tion method [37] characterize the uncertainty of IRT and MIRT by

the variations of diagnostic results. Frequentist methods [25, 29]

use standard error to reflect the uncertainty. Duck-Mayr et al. [8]

proposed a Gaussian process based method for nonparametric IRT

models. However, the estimation algorithm could be time consum-

ing, and function parameters are not considered. In deep learning,

Bayesian approximation and ensemble learning techniques are two

widely-studied types of methods [1] that quantify the uncertainty.

Bayesian approximation typically uses a probability distribution

to characterize the uncertainty of parameters and model outputs.

Representative methods include the Monte Carlo dropout [34], vari-

ational inference [30], and Bayesian neural network based models

[3]. Ensemble learning approaches [10, 17] train the deep learning

model multiple times and then average the model predictions. Al-

though inspiring, these methods have not been applied to CDMs yet.

It should be noted that in CDMs, the focus is the diagnostic results

(i.e., the estimated parameters) instead of the model predictions,
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which is opposite to deep learning models. Moreover, the difference

between diagnostic parameters and function parameters are not

recognized in existing methods.

3 PRELIMINARY
3.1 Task Overview
In the educational area, cognitive diagnosis is essentially a mea-

surement of students’ knowledge states. Through fitting students’

response data by cognitive diagnosis models, the estimated values

of student-related parameters are the diagnostic results, which rep-

resent the students’ levels of knowledge mastery. Suppose there

are students 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑀 }, questions 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑁 }, and
the Q-matrix𝑄 ∈ {0, 1}𝑁×𝐾 which indicates the related knowledge

concepts (KC) of the questions (i.e., 𝑄 𝑗𝑘 = 1 means that question

𝑒 𝑗 involves knowledge concept 𝑐𝑘 ). Then, the cognitive diagnosis

task can be formalized as follows.

Problem Definition. The observed data includes students’ re-

sponse logs 𝑅 = {𝑟𝑖 𝑗 } and the Q-matrix 𝑄 , where 𝑟𝑖 𝑗 ∈ {0, 1}
denotes the student 𝑠𝑖 ’s response to question 𝑒 𝑗 (i.e., incorrect or

correct). Our goal is to estimate the uncertainty of diagnostic results

(e.g., students’ proficiencies on knowledge concepts) provided by

cognitive diagnosis models. Here, the probability distribution is

adopted to depict the uncertainty.

3.2 Representative Cognitive Diagnosis Models
We briefly introduce the basic structure of cognitive diagnosis mod-

els (CDMs) and some representative methods. Generally, a CDM

contains two parts: (1) the diagnostic parameters (Φ), indicating
the proficiency levels of students (𝛼𝑖 ) and properties of questions

(𝛽 𝑗 ); (2) the interaction function about student and question pa-

rameters which outputs the probability of correctly answering the

question, i.e., 𝑝𝑖 𝑗 = 𝐹 (𝛼𝑖 , 𝛽 𝑗 ,Ω), where Ω denotes the parameters

of the interaction function. Figure 2 demonstrates the structures of

two representative cognitive diagnosis models, i.e., IRT and Neu-

ralCDM. After training the CDM to fit responses, the estimated

diagnostic parameters 𝛼𝑖 are diagnostic results.

As a representative traditional model, the IRT estimates the

interaction function 𝑝𝑖 𝑗 = 1/{1 + 𝑒−1.7×𝛽
disc

𝑗
(𝛼𝑖−𝛽diff𝑗

) }, where 𝛽disc
𝑗

and 𝛽diff
𝑗

indicate the discrimination and difficulty of question 𝑒 𝑗

respectively (𝛽 𝑗 = {𝛽disc
𝑗

, 𝛽diff
𝑗
}), and 𝛼𝑖 indicates the ability of

student 𝑠𝑖 . IRT has been extended to Multidimensional IRT (MIRT)

by using multidimensional vectors of student and question traits

[27]. There is no extra functional parameters in these CDMs, i.e.,

Ω = ∅.
As for deep learning-based cognitive diagnosis models, Wang

et al. proposed a general framework as well as a model called Neu-

ralCDM, where the interaction function is learned from data by

neural networks [32]. The formulation is as follows:

𝒙𝑖 𝑗 = 𝑸 𝑗 ◦ (𝜶𝑖 − 𝜷diff

𝑗 ) × 𝛽
disc

𝑗 , (1)

𝒇1 = Sigmoid(𝑾1 × 𝒙𝑖 𝑗 + 𝒃1), (2)

𝒇2 = Sigmoid(𝑾2 × 𝒇1 + 𝒃2), (3)

𝑝𝑖 𝑗 = Sigmoid(𝑾3 × 𝒇2 + 𝑏3), (4)

where 𝜶𝑖 indicates student 𝑠𝑖 ’s proficiency on each knowledge

concept; 𝜷diff

𝑗
indicates the difficulty of each knowledge concept

jQijr

IRT

Student i=1,2, ,M Question j=1,2, ,N

i

ijr

diff

j
disc

j
i

disc

j

,W b

diff

j

NeuralCDM

Figure 2: The model structures of IRT and NeuralCDM

tested by question 𝑒 𝑗 ; 𝛽
disc

𝑗
indicates the discrimination of question

𝑒 𝑗 ; 𝑸 𝑗 is the j-th row of Q-matrix. Ω = {𝑾1,𝑾2,𝑾3, 𝒃1, 𝒃2, 𝑏3}
are network parameters, where each element in𝑾∗ (∗ = 1, 2, 3) is
nonnegative.

4 UNCERTAINTY ESTIMATION FOR
COGNITIVE DIAGNOSIS MODELS

We first introduce an overview of our approach. Then, we provide a

unified objective function for mini-batch-based training which can

be applied to different CDMs on large datasets, and the reparame-

terization trick that facilitates the gradient computation of different

parameter distributions. Finally, we introduce the decomposition

of the uncertainty to better estimate the parameters.

4.1 Overview
As most continuous latent trait CDMs and existing deep learning-

based CDMs fall under the umbrella of the framework described

in 3.2, we choose to make minor modifications to the framework

so that our approach can be applied to a wider range of CDMs and

avoid impairing the diagnosing ability of the original model struc-

tures. Furthermore, in order to obtain the uncertainty of parameters

during model training, we change the point-wise estimations of

parameters into estimating the posterior distributions. The vari-

ance of a posterior distribution directly depicts the uncertainty of

the parameter. Uncertainty intervals can also be obtained as an

indicator of uncertainty, which is adopted by some studies [5, 11].

Consequently, we propose a unified Bayesian approach called UCD.

For convenience, we treat the parameters as random variables

and represent all the variables with Ψ = Φ ∪ Ω, where Φ denotes

the diagnostic variables, including student variables 𝛼 = {𝛼𝑖 , 𝑖 =
1, 2, . . . , 𝑀} and question variables 𝛽 = {𝛽 𝑗 , 𝑗 = 1, 2, . . . , 𝑁 }. The
overall generative process of the responses 𝑅 = {𝑟𝑖 𝑗 } modeled by

UCD is depicted in Figure 3. To directly estimate the posterior

distribution 𝑝 (Ψ|𝑅) is intractable. Instead, we adopt a practical

solution that approximates 𝑝 (Ψ|𝑅) with a parametric distribution

𝑞(Ψ|𝜃 ) which has good statistical properties [3]. Furthermore, by

assuming the independence among the variables, the distribution

can be factorized to:

𝑝 (Ψ|𝑅) ≃ 𝑞(Ψ|𝜃 ) = 𝑞(Φ|𝜃Φ)𝑞(Ω |𝜃Ω), (5)

where𝜃Φ and𝜃Ω are learnable parameters (notationswithout circles

in Figure 3) that define the distributions of Φ and Ω respectively.

Therefore, the goal of model training changes to finding the optimal

parameters 𝜃 = 𝜃Φ ∪𝜃Ω that make 𝑞(Ψ|𝜃 ) closest to 𝑝 (Ψ|𝑅). Along
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Figure 3: The graphic model of UCD

this way, we introduce the derivation of the objection function in

the following subsection.

4.2 Objective Function
In this subsection, we derive the objective function for mini-batch-

based optimization, which can be used for different CDMs. Primar-

ily, we choose to minimize the Kullback-Leibler divergence (𝐷𝐾𝐿)

[16], which is a widely accepted measurement of the distance be-

tween probability distributions. Therefore, the optimal 𝜃∗ can be

calculated as:

𝜃∗ = argmin𝜃𝐷𝐾𝐿 [𝑞(Ψ|𝜃 ) | |𝑝 (Ψ|𝑅)]
= argmin𝜃𝐷𝐾𝐿 [𝑞(Ψ|𝜃 ) | |𝑝 (Ψ)] − E𝑞 (Ψ |𝜃 ) log𝑝 (𝑅 |Ψ), (6)

where 𝑝 (Ψ) is the prior distribution of the variables.

𝐷𝐾𝐿 [𝑞(Ψ|𝜃 ) | |𝑝 (Ψ)] − E𝑞 (Ψ |𝜃 ) log 𝑝 (𝑅 |Ψ) is not an ideal ob-

jective function yet, as there is the calculation of expectation.

Based on the Monte Carlo approach [3], the expectation can

be approximated with the average of samplings. In addition,

we incorporate the mini-batch-based training strategy in order

to facilitate complicated CDMs and large datasets. Specifically,

assuming that there are𝑀𝑏 mini-batches, and for each data sample,

we draw𝑀𝑐 variable samples from the distribution 𝑞(Ψ|𝜃 ). Then
for i-th batch, let 𝐹 ′

𝑖
(𝜃 ) = 𝜋𝑖𝐿𝐴 − 𝐿𝐵 , where:

𝐿𝐴 = 𝐷𝐾𝐿 [𝑞(Ψ|𝜃 ) | |𝑝 (Ψ)], 𝐿𝐵 =
∑︁
𝑗

1

𝑀𝑐

𝑀𝐶∑︁
𝑚=1

log 𝑝 (𝑅 𝑗 |Ψ𝑗𝑚). (7)

Here, 𝑅 𝑗 is the j-th response in the batch, Ψ𝑗𝑚 is the m-th sample

from 𝑃 (Ψ|𝜃 ) for 𝑅 𝑗 , and
∑𝑀𝑏

𝑖=1
𝜋𝑖 = 1. We can adopt 𝜋𝑖 =

2
𝑀𝑏 −𝑖

2
𝑀𝑏 −1 [3].

Furthermore, we place weights on the KL divergence of diagnostic

variables and function variables to adjust their learning rates:

𝐿′𝐴 = 𝜁0𝐷𝐾𝐿 [𝑞(Φ|𝜃Φ) | |𝑝 (Φ)] + 𝜁1𝐷𝐾𝐿 [𝑞(Ω |𝜃Ω) | |𝑝 (Ω)], (8)

where 𝜁0 and 𝜁1 are hyper-parameters. Finally, the objective func-

tion for the i-th mini-batch is:

𝐹𝑖 (𝜃 ) = 𝜋𝑖𝐿′𝐴 − 𝐿𝐵 . (9)

Minimizing 𝐹𝑖 (𝜃 ) means better approximating the prior distribu-

tion (lower 𝐿′
𝐴
) and higher probability of reconstructing the re-

sponses (higher 𝐿𝐵 ). Although the objective follows the conven-

tional Bayesian methods, we first use it to unify the uncertainty

estimation for both traditional latent-trait CDMs and deep-learning-

based CDMs, and propose refinements specially designed for CDMs

in the following subsections.

4.3 Reparameterization
We adopt the gradient descent algorithm to optimize the parame-

ters, as gradient descent can be applied to both deep learning and

non-deep learning models and is more efficient than EM-based or

MH sampling-based algorithms in traditional approaches. However,

there still exists a problem that, if we directly sample Ψ from the

distribution 𝑞(Ψ|𝜃 ), the gradient of 𝜃 in 𝐿𝐵 will not be able to be

calculated. Therefore, the reparameterization trick is adopted. To

facilitate variables defined on different domains and simplify the

sampling process, we propose a theorem derived from the proposi-

tion in [3] as follows:

Theorem 4.1. Suppose there is a function ℎ(𝑥) and its inverse
function𝑔(𝑥). Let 𝜖 be a random variable having a probability density
𝜖 ∼ 𝑁 (0, 1), and let Ψ = 𝑔(𝜇 + 𝜎𝜖). Then we have ℎ(Ψ) ∼ 𝑁 (𝜇, 𝜎2),
and for a function 𝑓 (Ψ, 𝜃 ), we have:

𝜕

𝜕𝜃
E𝑞 (Ψ |𝜃 ) [𝑓 (Ψ, 𝜃 )] = E𝑞 (𝜖 ) [

𝜕𝑓 (Ψ, 𝜃 )
𝜕Ψ

𝜕Ψ

𝜃
+ 𝑓 (Ψ, 𝜃 )

𝜕𝜃
] . (10)

The proof is provided in Appendix A. Based on Theorem 4.1,

the partial derivative with respect to 𝜃 of an expectation can be

calculated as the expectation of a partial derivative, and the expec-

tation can be further approximated with MC sampling. If we select

a distribution for Ψ that ℎ(Ψ) ∼ 𝑁 (𝜇, 𝜎2), here 𝜃 = {𝜇, 𝜎}, then an

unbiased partial derivative with respect to 𝜃 of E𝑞 (Ψ |𝜃 ) log 𝑝 (𝑅 |Ψ)
(in Eq. (6)) can be calculated with the following steps: (1) draw sam-

ples of 𝜖 from 𝑁 (0, 1); (2) let Ψ = Ψ(𝜃, 𝜖) = 𝑔(𝜇 + 𝜎𝜖); (3) calculate
𝜕E𝑞 (Ψ |𝜃 ) log 𝑝 (𝑅 |Ψ)/𝜕𝜃 = 𝜕𝐿𝐵/𝜃 .

According to the domain of definition of the Ψ, different distribu-
tions 𝑞(Ψ|𝜃 ) can be selected. Using𝜓 to denote any variable in Ψ,
the corresponding distribution can be selected as shown in Table 1.

Compared to the original reparameterization, the derived method

simplified the implementation through Theorem 4.1 and Table 1,

as it reduces the hassle of finding suitable sampling probability

distributions for different parameter domains.

With the usage of the above probability distributions for each

variable𝜓 , the corresponding parameters that need to be estimated

during training are 𝜃𝜓 = {𝜇𝜓 , 𝜎𝜓 }, where 𝜓 ∈ Ψ = 𝛼 ∪ 𝛽 ∪ Ω.
It should be noted that, with the assumption of variable indepen-

dence, all variables are fully factorized, i.e., the covariance of a

multidimensional variable is 0.

4.4 Decomposition of the Uncertainty
A significant difference between diagnostic variables and function

variables is that: function variables are affected by all the responses

in data, while the diagnostic variables are mainly affected by related

responses. For example, in IRT, the distribution of 𝛼𝑖 is estimated

according to student 𝑠𝑖 ’s responses; in NeuralCDM, the distribu-

tion of student 𝑠𝑖 ’s proficiency on knowledge concept 𝑐𝑘 (𝛼𝑖𝑘 ) is

estimated according to 𝑠𝑖 ’s responses to questions that involve 𝑐𝑘 .

Therefore, even if the responses to a student/question are highly

consistent (illustrated as 𝑠1 in Figure 1), there still exists relatively

high uncertainty if related responses are too few, which we call

data uncertainty. Another factor that matters is the characteristics
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Table 1: Distributions selected for variables defined on different domains.

Domain of𝜓 ℎ𝜓 (𝑥) 𝑔𝜓 (𝑥) Examples

(−∞, +∞) 𝑥 𝑥
The student ability and question difficulty in IRT and MIRT; the net-

work bias in NeuralCDM. We get𝜓 ∼ 𝑁 (𝜇, 𝜎2).

(𝑎, +∞) ln(𝑥 − 𝑎) 𝑒𝑥 + 𝑎 The discrimination in IRT and MIRT; the weights of neural networks

in NeuralCDM. Here, 𝑎 = 0, which means𝜓 ∼ 𝑙𝑜𝑔 − 𝑛𝑜𝑟𝑚(𝜇, 𝜎2).

(𝑎, 𝑏) Logit( 𝑥−𝑎
𝑏−𝑎 ) Sigmoid(𝑥) (𝑏 − 𝑎) + 𝑎 the student ability, question difficulty and discrimination in Neural-

CDM. Here, 𝑎 = 0, 𝑏 = 1, which means𝜓 ∼ 𝑙𝑜𝑔𝑖𝑡 − 𝑛𝑜𝑟𝑚(𝜇, 𝜎2).

of CDMs themselves, such as the fitting ability and the stability

of parameter estimation. Such characteristics can make it difficult

to estimate diagnostic diagnostic parameters as definite values,

leading to model uncertainty.

To be specific, the distribution parameter 𝜎𝜙 is decomposed into

𝜎𝑚
𝜙

and 𝜎𝑑
𝜙
(𝜙 ∈ 𝛼 ∪ 𝛽), where 𝜎𝑚

𝜙
indicates the model uncertainty

learned from the CDM, and 𝜎𝑑
𝜙
is monotonically decreasing with the

number of related responses. In addition, considering that𝜎𝑑
𝜙
should

be positive and has a diminishing marginal utility when there is

sufficiently large number of relevant responses, we formulate it as

𝜎𝑑
𝜙
= 𝜆0𝑒

−𝜆1𝝉
, where 𝜏 is the number of responses related to 𝜙 ; 𝜆0

and 𝜆1 are learnable weights that adjust the rate of decreasing (two

sets of 𝜆0 and 𝜆1 can be used for questions and students respectively

when the amount of responses related to a question differs too much

from that to a student). Then, we use 𝜎𝜙 = 𝜎𝑚
𝜙
× 𝜎𝑑

𝜙
.

The whole graphical model of UCD is illustrated in Figure 3, and

the training algorithm is summarized in Appendix B.

4.5 Model Complexity
The space complexity of UCD-integrated CDMs depends on the

𝑞(Ψ|𝜃 ) we choose. In our case, although UCD doubles the number

of parameters, the space complexity is still O(M + N + U), where

M, N and U are the numbers of students, questions and function

parameters.

The increase in the number of parameters does not affect the time

cost much, as it does not change the gradient descent algorithm (we

did not observe appreciably more epochs before convergence in our

experiments). The extra time cost mainly comes from the sampling

process, especially the sampling of neural network parameters.

For example, in Eq. (2),𝑾1 is sampled for each data sample in 𝒙𝑖 𝑗 ,
changing the matrix-matrix multiplication (𝑾1 × 𝒙𝑖 𝑗 ) to multiple

matrix-vector multiplications, which is difficult for parallel GPU

computing. Nevertheless, this is an acceptable trade-off to obtain

the uncertainty, especially in deep learning-based CDMs where

traditional uncertainty estimation methods can not be applied.

5 EXPERIMENTS
We conduct comprehensive experiments to answer the following

research questions:

RQ1 CanUCDprovide reasonable uncertainty for different CDMs?

RQ2 Whether the captured uncertainty relevant to the decom-

posed sources?

RQ3 Can UCD more efficiently deal with sophisticated CDMs and

large datasets?

RQ4 What personalized diagnostic information can UCD provide?

Table 2: The statistics of the datasets.

FrcSub Math Eedi

number of students 536 7,756 17,740

number of questions 20 1,993 8,987

number of KCs 8 305 286

number of responses 10,720 637,798 610,032

RQ5 Does UCD avoid impairing the diagnostic ability of the

CDMs?

5.1 Dataset Description
We use three real-world datasets, i.e., FrcSub, Math and Eedi, in

the experiments. FrcSub is a widely used dataset in cognitive diag-

nosis modeling, which consists of students’ responses to fraction-

subtraction questions [23]. Math is a dataset collecting the test

performances of senior high school students. Eedi is the dataset

released by the NeurIPS 2020 education challenge (track 1), contain-

ing students’ answers to mathematics questions from Eedi
1
. We use

a subset of the original data starting from 04/01/2020 to 05/01/2020.

Table 2 shows some basic statistics.

5.2 Experimental Setup
To evaluate the effectiveness of our method, we applied UCD to two

representative non-deep learning CDMs, i.e., IRT [9] and MIRT [27],

and two representative deep learning-based CDMs, i,e, NeuralCDM

[32] and KaNCD [33]. In addition, we also compare our UCD with

the fully Bayesian sampling-based method [26] (FB) on IRT and

MIRT, multiple imputation [37] (MI) on IRT
2
, and the nonpara-

metric method GPIRT [8]. As ensemble-based method is the only

available baseline that can be directly applied on NeuralCDM and

KaNCD, we compare UCD with deep ensemble [17] (DE).

The fully Bayesian sampling-based approach was implemented

using PyStan
3
of which the underlying implementation is in C

language, and the number of warm-up samples is set to 500; GPIRT

is implemented based on the R package provided by the authors
4
;

the other approaches were implemented with Pytorch in Python.

All experiments were run on a Linux server with Intel Xeon Gold

5218 CPU and Tesla V100 GPU.

The responses of each student in the datasets are divided into

train:validate:test = 0.7:0.1:0.2.𝑀𝑐 is set to be 5. 𝜁0 and 𝜁1 are both

1
https://competitions.codalab.org/competitions/25449

2
Frequentist methods are not compared with because they use standard error instead

of probability distribution (or uncertainty interval) to represent the uncertainty of

student proficiency.

3
https://pystan.readthedocs.io/

4
https://github.com/duckmayr/gpirt/blob/main/
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Figure 4: A unidimensional illustration of interval transfor-
mation.

selected from [0.01, 0.1, 1, 1.5]. For all the standard deviation pa-

rameters (𝜎∗), to ensure that they are positive, we instead make

𝜎∗ = Softplus(𝜂∗), and learn 𝜂∗ through training. We select 𝑁 (0, 1),
log-norm(0,1) and logit-norm(0,1) as the prior distributions for vari-

ables defined on (−∞, +∞), (0, +∞) and (0, 1) respectively. To ini-

tialize the network variables, we initialize a matrix𝑊 with Kaiming

initialization [12], and then let 𝜇𝑊 = ln( |𝑊 |). The Adam algorithm

[15] is used for optimization, and the learning rate is 0.002.

5.3 Evaluation of Uncertainty Intervals (RQ1)
The uncertainty of the diagnostic results (i.e., student variable 𝛼)

is characterized by their estimated posterior distributions, and can

be further concretized with the confidence intervals (uncertainty

intervals) of the distributions. To facilitate the evaluation with

observable responses, we project the intervals of students’ knowl-

edge proficiencies [𝜶 𝑖 ,𝜶 𝑖 ] to the intervals of model predictions

[𝑝
𝑖 𝑗
, 𝑝𝑖 𝑗 ]. This is achieved by taking advantage of the monotonicity

of CDMs. As the monotonicity assumption in CDMs indicates, the

model prediction monotonically increases with any dimension of

knowledge proficiency𝜶𝑖 [27]. Figure 4 illustrates a unidimensional

example, where the curve depicts the predicted probability (that a

student can correctly answer the question 𝑒 𝑗 ) with respect to the

student’s knowledge proficiency. Specifically, we first obtain the

95% confidence interval of the estimated knowledge proficiency

[𝜶 𝑖 ,𝜶 𝑖 ], where 𝜶 𝑖 = 𝑔(𝝁𝛼𝑖 − 1.96𝝈𝛼𝑖 ) and 𝜶 𝑖 = 𝑔(𝝁𝛼𝑖 + 1.96𝝈𝛼𝑖 )].
Here,𝑔(·) is the function discussed in Table 1. Next, we sample ques-

tion variables (𝜷 𝑗 ) and network variables (Ω) 50 times and calculate

their corresponding predictions with 𝜶 𝑖 and the corresponding in-

teraction of the CDM. 𝑝
𝑖 𝑗

= E𝑞 (𝜷 𝑗 ,Ω |𝜃𝛽𝑗 ,𝜃Ω )𝑝 (𝑟𝑖 𝑗 = 1|𝜶 𝑖 ) is finally
approximated with the average of these predictions. Similarly, 𝑝𝑖 𝑗
can be obtained. DE is exceptional, for which [𝜶 𝑖 ,𝜶 𝑖 ] is directly
obtained from the predictions of multiple trained CDM instances.

In order to evaluate whether reasonable uncertainty intervals

are obtained, Prediction Interval Coverage Probability (PICP) and

Prediction Interval Average Width (PIAW) are widely accepted

metrics [1]. PICP calculates the proportion of true values lying in the

interval, while PIAW calculates the average widths of the intervals.

To adapt to binary response labels (0 or 1) in our experiments, we

adjust the formulation as follows:

𝑃𝐼𝐶𝑃 =
1

𝑛

∑︁
𝑖, 𝑗

𝑐𝑖 𝑗 , 𝑃𝐼𝐴𝑊 =
1

𝑛

∑︁
𝑖, 𝑗

(𝑝𝑖 𝑗 − 𝑝𝑖 𝑗 ), (11)

where 𝑛 is the number of responses in the test set, and

Figure 5: The 𝜎𝛼 of students estimated by U-IRT and U-
NCDM.

𝑐𝑖 𝑗 =

{
1, [0.5𝑟𝑖 𝑗 , 0.5(1 + 𝑟𝑖 𝑗 )] ∩ [𝑝

𝑖 𝑗
, 𝑝𝑖 𝑗 ] ≠ ∅,

0, otherwise.
(12)

Well estimated intervals should have a PICP close to the con-

fidence level, and the same PICP with a smaller PIAW indicates

a tighter interval. Furthermore, with a certain confidence level,

a CDM having a smaller PIAW usually indicates more confident

diagnostic results.

The results of the models are presented in Table 3.
5
We have

the following observations. First, UCD achieves PICPs closer to

0.95, which indicates accurate uncertainty estimation. Second, on

IRT, MI tends to underestimate the uncertainty. The uncertainty

estimated by UCD is consistent with the traditional FB method, and

UCD performs better than FB on FrcSub and Math. On MIRT, FB

overestimates the uncertainty (the abnormally high PIAW), while

UCD provides reasonable results. These validate the effectiveness

of UCD on traditional CDMs. On NeuralCDM and KaNCD, UCD

gets better results most time. Moreover, the comparability issue

among the CDMs trained multiple times (i.e., scale linking [18]) is

dismissed in DE.

5.4 Analysis of the Uncertainty Source (RQ2)
As stated in subsection 4.4, the uncertainty of diagnostic variables

comes from both data aspect and model aspect. Better insights

into the uncertainty source can be useful in applications, such as

deciding the number of questions or repeats of knowledge concepts

in an examination, and selecting suitable CDMs that have a better

balance between diagnosis accuracy and model uncertainty on

the data. For better understanding, we visualize the uncertainty

parameters 𝜎𝛼 estimated on Math in Figure 5. For brevity, we use

the prefix "U-" to identify the CDMs integrated with UCD.

For data aspect, as can be observed in Figure 5, there is a ten-

dency that diagnostic variables with more related responses should

have lower uncertainty. To fully validate whether this tendency is

captured by UCD, we calculate the Spearman rank correlation coef-

ficient [38] between the 𝜎𝛼 of students and the number of responses

related to 𝛼 in the training set. The results are presented in Table 4.

As expected, we can observe strong negative correlations, which

validate the tendency. Here we focus on the diagnosed proficiencies

of students (𝛼), which is the goal of CDMs, and the same results

can be observed for question parameters (𝛽).

5
The results of GPIRT on Math and Eedi were not obtained because the iteration stop

condition is too hard to meet for large datasets, causing unacceptable running time.
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Table 3: Experimental results of student performance prediction (uncertainty interval).

Dataset Metric

IRT MIRT NeuralCDM KaNCD

FB MI GPIRT UCD FB UCD DE UCD DE UCD

FrcSub

PICP 0.935 ± .001 0.885 ± .008 0.933 ± .001 0.957 ± .001 1.000 ± .000 0.922 ± .001 0.868 ± .003 0.956 ± .003 0.899 ± .004 0.918 ± .001
PIAW 0.340 ± .001 0.277 ± .007 0.335 ± .001 0.342 ± .003 0.999 ± .000 0.264 ± .012 0.085 ± .012 0.472 ± .007 0.191 ± .008 0.247 ± .005

Math

PICP 0.867 ± .001 0.802 ± .006 - 0.883 ± .001 1.000 ± .000 0.940 ± .002 0.816 ± .003 0.927 ± .004 0.875 ± .004 0.837 ± .003

PIAW 0.159 ± .001 0.269 ± .006 - 0.194 ± .002 0.990 ± .000 0.393 ± .007 0.084 ± .006 0.468 ± .004 0.176 ± .011 0.143 ± .004

Eedi

PICP 0.898 ± .001 0.830 ± .007 - 0.892 ± .001 1.000 ± .000 0.941 ± .002 0.831 ± .002 0.946 ± .004 0.864 ± .005 0.827 ± .003

PIAW 0.266 ± .001 0.226 ± .006 - 0.247 ± .003 0.999 ± .000 0.493 ± .008 0.124 ± .005 0.471 ± .004 0.195 ± .020 0.107 ± .005

Table 4: The Spearman rank correlations between 𝜎𝛼 and
the number of related questions. The results of U-IRT and
U-MIRT cannot be calculated on FrcSub because all students
answer the same number of questions.

Dataset U-IRT U-MIRT U-NeuralCDM U-KaNCD

FrcSub - - -0.96 -0.92

Math -0.91 -0.89 -0.94 -0.60

Eedi -0.91 -0.69 -0.85 -0.42

For model aspect, as we can observe from Figure 5, although

there is a decreasing tendency with the number of responses, there

are variances on a certain number of responses, which are caused

by 𝜎𝑚
𝜙
. The estimated 𝜎𝑚

𝜙
has a more complicated relation with the

properties of CDMs, which can be difficult to fully analyze. We here

provide a viewpoint that we observed in experiments. In general,

the distance between model predictions and the true response la-

bels indicates the ability of the model to reconstruct the responses.

Therefore, this distance can be an indicator of the model charac-

teristic, which may be relevant to the model uncertainty. Along

this way, we calculate the Spearman rank correlation between this

distance and the estimated 𝜎𝑚
𝜙

of student variables.

For CDMs diagnosing latent abilities (no corresponding relation-

ship with Q-matrix, e.g., U-IRT, U-MIRT), the overall distance of

student 𝑠𝑖 is:

dist(𝑠𝑖 ) =
∑︁
𝑟𝑖 𝑗 ∈𝑅𝑖

|𝑝𝑖 𝑗 − 𝑟𝑖 𝑗 |, (13)

where 𝑅𝑖 is the set of responses of 𝑠𝑖 in data; 𝑝𝑖 𝑗 is expected predic-

tion of input 𝑠𝑖 and 𝑒 𝑗 ; 𝑟𝑖 𝑗 is the true response. Then, the Spearman

rank correlation between {dist(𝑠𝑖 ), 𝑖 = 1, 2, . . . , 𝑀} and {𝜎𝑚𝛼𝑖 , 𝑖 =
1, 2, . . . , 𝑀} is calculated.

For CDMs diagnosing explicit knowledge proficiencies (having

corresponding relationship with Q-matrix, e.g., U-NeuralCDM, U-

KaNCD), the overall distance of student 𝑠𝑖 ’s proficiency on knowl-

edge concept 𝑐𝑘 is:

dist(𝑠𝑘𝑖 ) =
∑︁

𝑟𝑖 𝑗 ∈𝑅𝑘𝑖

|𝑝𝑖 𝑗 − 𝑟𝑖 𝑗 |, (14)

where 𝑅𝑘
𝑖
is the set of responses of 𝑠𝑖 to the questions requiring

𝑐𝑘 . Then, the Spearman rank correlation between {dist(𝑠𝑘
𝑖
), 𝑖 =

1, 2, . . . , 𝑀, 𝑘 = 1, 2, . . . , 𝐾} and {𝜎𝑚𝛼𝑖𝑘 , 𝑖 = 1, 2, . . . , 𝑀, 𝑘 = 1, 2, . . . , 𝐾}
is calculated. The results are presented in Table 5, where we can

observe obvious correlations on most models, which partially ex-

plains the differences of model uncertainty (𝜎𝑚𝛼 ). The relatively

weak correlation presented by U-KaNCD should be caused by that

Table 5: The Spearman rank correlations between 𝜎𝑚𝛼 and the
fitting ability. The results of U-IRT and U-MIRT cannot be
calculated on FrcSub because all students answer the same
number of questions.

Dataset U-IRT U-MIRT U-NeuralCDM U-KaNCD

FrcSub - - 0.82 0.23

Math 0.73 0.53 0.90 0.05

Eedi 0.60 -0.63 0.99 -0.16

KaNCD actually models the associations among knowledge con-

cepts, which is not measured by Eq. (14). It should be noticed that

the evaluation here provides a viewpoint to understand 𝜎𝑚𝛼 . The

whole relation between 𝜎𝑚𝛼 and CDMs can be more complicated.

5.5 Comparison of the Efficiency (RQ3)
As stated in the Introduction, one of the limitations of traditional

uncertainty estimation approaches is the limited application range

of training methods, which are inefficient and even inapplicable

to complex cognitive diagnosis models (CDMs) and large datasets.

Here, we provide the training time costs (until convergence) of

the fully Bayesian sampling-based approach, multiple imputation

approach, and our UCD in Table 6. We can observe from the table

that the model complexity and data size have a significant impact

on the time cost of traditional approaches. Specifically, FB-MIRT

requires much more time cost than FB-IRT, and their time cost

increases dramatically on larger datasets, i.e., Math and Eedi. Simi-

larly, GPIRT requires unacceptable time costs when applied to Math

and Eedi. In contrast, the time cost increment of UCD is more mod-

erate. Moreover, UCD can be applied to deep learning-based CDMs

(e.g., NeuralCDM and KaNCD) where traditional approaches are not

applicable. The ensemble-based uncertainty estimation approaches

from deep learning academia are essentially not for CDMs, and

the time cost is N times the original CDM, where N is the number

of trials for CDM training. Larger N can provide more accurate

estimations but leads to higher time costs.

5.6 Illustration of Diagnostic Information (RQ4)
Through integrating UCD, a CDM can provide more information

about the diagnostic results. Here we present an example of diagnos-

tic results provided by IRT, U-IRT, NeuralCDM and U-NeuralCDM,

in Figure 6. We randomly select three students from FrcSub, and

present their responses to three questions in the table, and the diag-

nostic reports in the subfigures. (For conciseness, we only present

part of the responses and diagnositc reports.) From the figure, we

can observe that, both IRT and NeuralCDM provides point-wise
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(a) IRT (b) U-IRT

(c) NeuralCDM (d) U-NeuralCDM

Student 3Student 3

Concept Student 1 Student 2 Student 3

Question 1 A, B, C

Question 2 C, D, E

Question 3 C, E, F

A: Find a common denominator

B: Column borrow to subtract the second numerator 

from the first

C: Subtract numerators

D: Convert a whole number to a fraction

E: Separate a whole number from a fraction

F: Borrow from whole number part

Figure 6: Differences of diagnostic results.

Table 6: Comparison of time cost.

Approach CDM FrcSub Math Eedi

FB

IRT 15s 1h 21min 2h 10min

MIRT 3min 15s >12h >12h

MI IRT 16min 30s >12h >12h

GPIRT IRT 3min - -

UCD

IRT 90s 7min 9min 20s

MIRT 1min 58s 7min 45s 19min 31s

proficiencies of students. For U-IRT, similar proficiencies are re-

ported (i.e., Student 2 < Student 1 < Student 3); For U-NeuralCDM,

the modes of the contributions are also close to the results of Neu-

ralCDM (e.g., the proficiency on F is around 0.65). What’s more,

U-IRT and U-NeuralCDM provide the uncertainty of their diag-

nostic results. For example, in Figure 6(d), U-NeuralCDM is quite

confident in C (having the most related responses), but more un-

certain on B. Based on the uncertainty information, users (e.g.,

teachers) can decide whether to assign additional questions for bet-

ter diagnosis; downstream applications, such as learning materials

recommendation, can pay more attention to confident diagnostic

results. Reducing uncertainty can also be considered in the next-

question-selection process in computerized adaptive testing [2].

5.7 Impact on Diagnostic Ability (RQ5)
In algorithm designing, it is common to encounter situations where

it is difficult to simultaneously satisfy different objectives, requiring

a trade-off (e.g., accuracy and efficiency in recommender systems).

Ideally, when estimating the uncertainty of CDMs, we do not expect

negative impacts on the original diagnostic ability of the CDMs.

Therefore, UCD is designed with mild modifications of the original

CDM structures in order to smoothly conduct the uncertainty es-

timation. To validate it, we evaluate the diagnostic performances

of CDMs before and after integrating UCD. Following [32], we use

the diagnosed results to predict students’ performances on ques-

tions in the test set, and use AUC and accuracy as metrics. The

results of different models are presented in Table 7. Fortunately, we

did not observe such degradation from our method. Moreover, for

non-deep learning-based U-IRT and U-MIRT, there are considerable

Table 7: Experimental results of student performance predic-
tion (point-wise/expectation).

Dataset FrcSub Math Eedi

Metric AUC Acc AUC Acc AUC Acc

IRT 0.829 0.778 0.809 0.779 0.796 0.758

U-IRT 0.881 0.805 0.815 0.781 0.808 0.766

MIRT 0.877 0.807 0.810 0.774 0.781 0.744

U-MIRT 0.894 0.822 0.822 0.782 0.806 0.764

NeuralCDM 0.894 0.824 0.808 0.772 0.811 0.768

U-NeuralCDM 0.899 0.826 0.806 0.775 0.810 0.765

KaNCD 0.900 0.835 0.824 0.783 0.809 0.765

U-KaNCD 0.903 0.838 0.822 0.783 0.811 0.764

improvements that might benefit from the regularization of prior

distributions of diagnostic variables and the gradient descending

algorithm.

6 CONCLUSION
In this paper, we proposed a unified solution to the uncertainty

estimation of cognitive diagnosis models (UCD). Compared to tra-

ditional approaches, UCD follows the Bayesian strategy but pro-

vides better efficiency, and more sufficiently models the differences

among parameters into the uncertainty from both data and model

aspects. Therefore, UCD can not only be applied to traditional non-

deep learning latent trait models but also fill the vacancy for deep

learning-based models.

In UCD, we introduced a unified objective function and derived

a reparameterization approach that can be applied to large-scale

diagnosis model parameters defined on different domains. The

current solution is based on the independence assumption among

model parameters. In future studies, UCD can be further improved

by considering the covariance among diagnostic parameters to

better fit advanced cognitive diagnosis models (e.g., KaNCD).
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A PROOF OF THEOREM 4.1
Proof. As 𝑔(𝑥) is the inverse function of ℎ(𝑥), it is easy to get

ℎ(Ψ) = (𝜇 + 𝜎𝜖) ∼ 𝑁 (𝜇, 𝜎2).
Then, we prove that 𝑞(Ψ|𝜃 )dΨ = 𝑞(𝜖)d𝜖 .

𝑞(Ψ|𝜃 )dΨ = ℎ′ (Ψ) 𝑓 (ℎ(Ψ))dΨ
= ℎ′ (Ψ) 𝑓 (ℎ(Ψ))d𝑔(ℎ(Ψ))
= ℎ′ (Ψ) 𝑓 (ℎ(Ψ))𝑔′ (ℎ(Ψ))dℎ(Ψ)
= 𝑓 (𝜇 + 𝜎𝜖)d(𝜇 + 𝜎𝜖)

=
1

√
2𝜋𝜎

𝑒
− (𝜇+𝜎𝜖−𝜇)

2

2𝜎2 · 𝜎d𝜖

=
1

√
2𝜋
𝑒−

𝜖2

2 d𝜖

= 𝑞(𝜖)d𝜖.
Therefore, we have:

𝜕

𝜕𝜃
E𝑞 (Ψ |𝜃 ) [𝑓 (Ψ, 𝜃 )] =

𝜕

𝜕𝜃

∫
𝑓 (Ψ, 𝜃 )𝑞(Ψ|𝜃 )dΨ

=
𝜕

𝜕𝜃

∫
𝑓 (Ψ, 𝜃 )𝑞(𝜖)d𝜖

= E𝑞 (𝜖 ) [
𝜕𝑓 (Ψ, 𝜃 )
𝜕Ψ

𝜕Ψ

𝜃
+ 𝑓 (Ψ, 𝜃 )

𝜕𝜃
] .

□

B UCD TRAINING
The overall training algorithm of UCD is summarized as follows,

where 𝑙 is the learning rate. Existing gradient descent algorithms,
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such as SGD [4] and Adam [15], can be adopted to update the pa-

rameters (line 11-12). The training process does not make much

difference with the original cognitive diagnosis, except that it intro-

duces the sampling of variables and the modification of objective

function.

As described in the experimental setup (5.2), we sample 5 samples

for each variables in a mini-batch, i.e.,𝑀𝑐=5, which is enough for

our experiments. Larger 𝑀𝑐 will result in more computation. For

both 𝜁0 and 𝜁1, we conducted grid search in the range of [0.01, 0.1, 1,

1.5]. 10% of each student’s response data was used as the validation

set. The best epoch for each choice of hyperparameters was chosen

by the highest AUC and Acc on the validation set, because these

are the basic metrics for cognitive diagnosis itself. Furthermore, the

best choice of hyperparameters is decided by a high PICP (in our

case, close to 0.95) with relatively small PIAW.

Algorithm 1 UCD training algorithm

Input: Responses R; Q-matrix Q

Parameter: Parameters of the approximated posterior

distributions, i.e., 𝜃Φ = {𝜇Φ, 𝜎𝑚Φ , 𝜆0, 𝜆1}, 𝜃Ω = {𝜇Ω, 𝜎Ω}
Output: Approximated posterior distributions of diagnostic

variables 𝑞(Φ|𝜃Φ)
1: while not converged do
2: for batch i in R do
3: for variable𝜓 in Φ ∪ Ω do
4: Draw𝑀𝑐 samples of 𝜖 from 𝑁 (0, 1)
5: if 𝜓 is a diagnostic variable in Φ then
6: 𝜎𝑑

𝜓
= 𝜆0𝑒

−𝜆1𝝉
, 𝜎𝜓 = 𝜎𝑑

𝜓
× 𝜎𝑚

𝜓

7: end if
8: Let𝜓 = 𝑔𝜓 (𝜇𝜓 + 𝜎𝜓𝜖) (Table 1)
9: end for
10: Calculate the loss 𝐹𝑖 (𝜃 ) = 𝜋𝑖𝐿′𝐴 − 𝐿𝐵 , where

𝐿′
𝐴
= 𝜁0𝐷𝐾𝐿 [𝑞(Φ|𝜃Φ) | |𝑝 (Φ)] + 𝜁1𝐷𝐾𝐿 [𝑞(Ω |𝜃Ω) | |𝑝 (Ω)],

𝐿𝐵 =
∑
𝑗

1

𝑀𝑐

∑𝑀𝐶

𝑚=1
log 𝑝 (𝑅 𝑗 |Ψ𝑗𝑚) . Eq. ((7)-(9))

11: for 𝜃 ∈ 𝜃Φ ∪ 𝜃Ω do
12: 𝜃 ← 𝜃 − 𝑙 ▽𝜃 𝐹𝑖 (𝜃 )
13: end for
14: end for
15: end while
16: return 𝑞(Φ|𝜃Φ)

C SUPPLEMENT OF RQ4
Here we provide more illustrations of the diagnostic information

as the supplement of RQ4. Figure 7 lists the full responses of the

randomly selected students in 5.6. Figure 8 illustrates the full di-

agnostic information of Student 3 provided by the original CDMs

and the UCD models. The results provided by IRT and U-IRT re-

main the same with Figure 6 and thus are not presented again. We

can observe that the variances of the distributions provided by U-

NeuralCDM and U-KaNCD have similar relation with the number

of responses relevant to the knowledge concepts. Strictly speak-

ing, the estimation of MIRT does not involve knowledge concepts,

therefore the diagnostic results 𝜃 is not associated with the pre-

defined knowledge concepts. This makes U-MIRT produce similar

uncertainty on different dimensions of 𝜃 .

Correctly answered questions Incorrectly answered questions

Student 1 2, 7, 8, 11, 15, 16 1, 3, 5, 9, 12, 17, 18, 20

Student 2 4, 6 1, 2, 3, 5, 9, 10, 13, 14, 15, 16, 18, 20

Student 3 1, 3, 4, 7, 8, 10, 11, 12, 16, 20 2, 9, 13, 17

Knowledge

concept
Knowledge concept name Related question IDs

A Find a common denominator 1, 7, 11, 5, 13

B
Column borrow to subtract the 

second numerator from the first
1, 18

C Subtract numerators
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 20

D Convert a whole number to a fraction 2, 15, 19

E
Separate a whole number from a 

fraction

4, 5, 2, 9, 10, 3, 13, 14, 16, 17, 

18, 19, 20

F Borrow from whole number part 4, 10, 3, 13, 17, 18, 19, 20

G Simplify before subtracting 4, 19, 20

H Reduce answers to simplest form 5, 10, 12

(a) Responses of the three students

(b) Knowledge concepts and related questions

Figure 7: All responses of the randomly selected students,
the knowledge concepts and questions.

NeuralCDM

KaNCD

MIRT U-MIRT

U-NeuralCDM

U-KaNCD

Figure 8: Diagnostic results of Student 3’s proficiency on all
knowledge concepts.

3554


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Task Overview
	3.2 Representative Cognitive Diagnosis Models

	4 Uncertainty Estimation for Cognitive Diagnosis Models
	4.1 Overview
	4.2 Objective Function
	4.3 Reparameterization
	4.4 Decomposition of the Uncertainty
	4.5 Model Complexity

	5 Experiments
	5.1 Dataset Description
	5.2 Experimental Setup
	5.3 Evaluation of Uncertainty Intervals (RQ1)
	5.4 Analysis of the Uncertainty Source (RQ2)
	5.5 Comparison of the Efficiency (RQ3)
	5.6 Illustration of Diagnostic Information (RQ4)
	5.7 Impact on Diagnostic Ability (RQ5)

	6 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 4.1
	B UCD Training
	C Supplement of RQ4



